Relevant articles and documents
All total 158 Articles be found
Sol-gel synthesis of ceria-zirconia-based high-entropy oxides as high-promotion catalysts for the synthesis of 1,2-diketones from aldehyde
Dinjar, Kristijan,Djerdj, Igor,Koj?inovi?, Jelena,Kukovecz, ákos,Markovi?, Berislav,Mileti?, Aleksandar,Nagy, Sándor Balázs,Sapi, Andras,Stenzel, David,Széchenyi, Aleksandar,Szenti, Imre,Tang, Yushu,Tatar, Dalibor,Varga, Gábor,Ziegenheim, Szilveszter
, (2021/10/20)
Efficient Lewis-acid-catalyzed direct conversion of aldehydes to 1,2-diketones in the liquid phase was enabled by using newly designed and developed ceria–zirconia-based high-entropy oxides (HEOs) as the actual catalysts. The synergistic effect of various cations incorporated in the same oxide structure (framework) was partially responsible for the efficiency of multicationic materials compared to the corresponding single-cation oxide forms. Furthermore, a clear, linear relationship between the Lewis acidity and the catalytic activity of the HEOs was observed. Due to the developed strategy, exclusively diketone-selective, recyclable, versatile heterogeneous catalytic transformation of aldehydes can be realized under mild reaction conditions.
METHOD FOR THE HYDRODEOXYGENATION OF OXYGENATED COMPOUNDS TO UNSATURATED PRODUCTS
-
Page/Page column 10, (2021/01/23)
The invention relates to methods of hydrodeoxygenation of oxygenated compounds into compounds with unsaturated carbon-carbon bonds, comprising the steps of: a) providing a reaction mixture comprising, an oxygenated compound containing one or more of a hydroxyl, keto or aldehyde group, an ionic liquid, a homogeneous metal catalyst, and carbon monoxide or a carbon monoxide releasing compound, b) reacting said reaction mixture under a H2 atmosphere at acidic conditions at a temperature between 180 and 250 °C and a pressure between 10 and 200 bar.
Efficient production of adipic acid from 2-methoxycyclohexanone by aerobic oxidation with a phosphotungstic acid catalyst
Hatakeyama, Kosuke,Nakagawa, Yoshinao,Tamura, Masazumi,Tomishige, Keiichi
, p. 4962 - 4974 (2020/08/25)
Oxidative cleavage reaction of 2-methoxycyclohexanone (2-MCO) to adipic acid (AA) and methanol with O2 in water solvent was investigated. 2-MCO and AA are one of the lignin-based compounds produced via hydrogenation of guaiacol and an important monomer in industry, respectively. Various vanadium compounds and heteropolyacids were tested as homogeneous catalysts because vanadium compounds, especially phosphomolybdovanadic acids, have been known to be active in various oxidative cleavage reactions with O2. Simple vanadium-free phosphotungstic acid (H3PW12O40), which has not been regarded as an oxidation catalyst using O2 as the oxidant, showed good catalytic activity and excellent selectivity to AA. The carbon-based AA yield reached 74% (86% in molar basis) and this value was higher than those obtained with vanadium-based catalysts. A reuse test and 31P NMR confirmed that the H3PW12O40 catalyst was stable and reusable. Kinetic studies and the reaction test using a radical inhibitor suggested that the reaction mechanism is not auto-oxidation involving free radicals. Instead, the substrate was first activated by one-electron oxidation by H3PW12O40 catalyst and then reacted with O2.
Bioinspired oxidation of oximes to nitric oxide with dioxygen by a nonheme iron(II) complex
Bhattacharya, Shrabanti,Lakshman, Triloke Ranjan,Sutradhar, Subhankar,Tiwari, Chandan Kumar,Paine, Tapan Kanti
, p. 3 - 11 (2019/11/11)
The ability of two iron(II) complexes, [(TpPh2)FeII(benzilate)] (1) and [(TpPh2)(FeII)2(NPP)3] (2) (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate, NPP-H = α-isonitrosopropiophenone), of a monoanionic facial N3 ligand in the O2-dependent oxidation of oximes is reported. The mononuclear complex 1 reacts with dioxygen to decarboxylate the iron-coordinated benzilate. The oximate-bridged dinuclear complex (2), which contains a high-spin (TpPh2)FeII unit and a low-spin iron(II)–oximate unit, activates dioxygen at the high-spin iron(II) center. Both the complexes exhibit the oxidative transformation of oximes to the corresponding carbonyl compounds with the incorporation of one oxygen atom from dioxygen. In the oxidation process, the oxime units are converted to nitric oxide (NO) or nitroxyl (HNO). The iron(II)–benzilate complex (1) reacts with oximes to afford HNO, whereas the iron(II)–oximate complex (2) generates NO. The results described here suggest that the oxidative transformation of oximes to NO/HNO follows different pathways depending upon the nature of co-ligand/reductant.
A study on the cataluminescence of propylene oxide on FeNi layered double hydroxides/graphene oxide
Li, Ming,Hu, Yufei,Li, Gongke
, p. 11823 - 11830 (2021/07/11)
In this work, FeNi layered double hydroxides/graphene oxide (FeNi LDH/GO) was prepared, which exhibits excellent selective cataluminescent performance towards propylene oxide. The selectivity and sensitivity of the cataluminescence (CTL) reaction were investigated in detail. Moreover, the catalytic reaction mechanism, including the intermediate products and the conversion of reactants to products, was discussed based on both the experimental and computational results. Furthermore, the proposed FeNi LDH/GO based CTL sensor was successfully applied for the determination of propylene oxide residue in fumigated raisins, which indicates extensive application potential for rapid food safety evaluation.